
CS 224n: Assignment #2

Due date: 2/9 11:59 PM PST (You are allowed to use 3 late days maximum for this assignment)

These questions require thought, but do not require long answers. Please be as concise as possible.

We encourage students to discuss in groups for assignments. However, each student must finish

the problem set and programming assignment individually, and must turn in her/his

assignment. We ask that you abide the university Honor Code and that of the Computer Science

department, and make sure that all of your submitted work are done by yourself.

Please review any additional instructions posted on the assignment page at

http://cs224n.stanford.edu/assignments.html. When you are ready to submit, please follow the

instructions on the course website.

Note: In this assignment, the inputs to neural network layers will be row vectors because this

is standard practice for TensorFlow (some built-in TensorFlow functions assume the inputs

are row vectors). This means the weight matrix of a hidden layer will right-multiply instead

of left-multiply its input (i.e., xW + b instead of Wx+ b).

1 Tensorflow Softmax (25 points)

In this question, we will implement a linear classifier with loss function

J(W) = CE(y, softmax(xW))

Where x is a row vector of features and W is the weight matrix for the model. We will use TensorFlow’s

automatic differentiation capability to fit this model to provided data.

(a) (5 points, coding) Implement the softmax function using TensorFlow in q1 softmax.py. Remember

that

softmax(x)i =
exi∑
j e

xj

Note that you may not use tf.nn.softmax or related built-in functions. You can run basic (nonex-

haustive tests) by running python q1 softmax.py.

(b) (5 points, coding) Implement the cross-entropy loss using TensorFlow in q1 softmax.py. Remember

that

CE(y, ŷ) = −
Nc∑
i=1

yi log(ŷi)

where y ∈ RNc is a one-hot label vector and Nc is the number of classes. This loss is summed over all

examples (rows) of a minibatch. Note that you may not use TensorFlow’s built-in cross-entropy functions

for this question. You can run basic (non-exhaustive tests) by running python q1 softmax.py.

(c) (5 points, coding/written) Carefully study the Model class in model.py. Briefly explain the purpose

of placeholder variables and feed dictionaries in TensorFlow computations. Fill in the implementations

for add placeholders and create feed dict in q1 classifier.py.

1

CS 224n: Assignment #2

Hint: Note that configuration variables are stored in the Config class. You will need to use these

configuration variables in the code.

Solution: Placeholder variables and feed dictionaries make it possible to feed data (such as training

examples for a neural network) into the computational graph.

(d) (5 points, coding) Implement the transformation for a softmax classifier in the function add prediction op

in q1 classifier.py. Add cross-entropy loss in the function add loss op in the same file. Use the

implementations from the earlier parts of the problem, not TensorFlow built-ins.

(e) (5 points, coding/written) Fill in the implementation for add training op in q1 classifier.py.

Explain how TensorFlow’s automatic differentiation removes the need for us to define gradients explicitly.

Verify that your model is able to fit to synthetic data by running python q1 classifier.py and

making sure that the tests pass.

Hint: Make sure to use the learning rate specified in Config.

Solution: TensorFlow’s automatic differentiation means we only need to define the forward pass

of our model; the backwards pass is done automatically, allowing us to optimize the model without

explicitly defining gradients.

2 Neural Transition-Based Dependency Parsing (50 points)

In this section, you’ll be implementing a neural-network based dependency parser. A dependency parser

analyzes the grammatical structure of a sentence, establishing relationships between “head” words and words

which modify those heads. Your implementation will be a transition-based parser, which incrementally builds

up a parse one step at a time. At every step it maintains a partial parse, which is represented as follows:

• A stack of words that are currently being processed.

• A buffer of words yet to be processed.

• A list of dependencies predicted by the parser.

Initially, the stack only contains ROOT, the dependencies lists is empty, and the buffer contains all words

of the sentence in order. At each step, the parse applies a transition to the partial parse until its buffer is

empty and only ROOT is on the stack. The following transitions can be applied:

• SHIFT: removes the first word from the buffer and pushes it onto the stack.

• LEFT-ARC: marks the second (second most recently added) item on the stack as a dependent of the

first item and removes the second item from the stack.

• RIGHT-ARC: marks the first (most recently added) item on the stack as a dependent of the second

item and removes the first item from the stack.

Your parser will decide among transitions at each state using a neural network classifier. First, you will

implement the partial parse representation and transition functions.

(a) (6 points, written) Go through the sequence of transitions needed for parsing the sentence “I parsed

this sentence correctly”. The dependency tree for the sentence is shown below. At each step, give the

configuration of the stack and buffer, as well as what transition was applied this step and what new

dependency was added (if any). The first three steps are provided below as an example.

Page 2 of 10

CS 224n: Assignment #2

	

ROOT I parsed this sentence correctly

stack buffer new dependency transition

[ROOT] [I, parsed, this, sentence, correctly] Initial Configuration

[ROOT, I] [parsed, this, sentence, correctly] SHIFT

[ROOT, I, parsed] [this, sentence, correctly] SHIFT

[ROOT, parsed] [this, sentence, correctly] parsed→I LEFT-ARC

Solution:
stack buffer new dependency transition

[ROOT, parsed, this] [sentence, correctly] SHIFT

[ROOT, parsed, this, sentence] [correctly] SHIFT

[ROOT, parsed, sentence] [correctly] sentence→this LEFT-ARC

[ROOT, parsed] [correctly] parsed→sentence RIGHT-ARC

[ROOT, parsed, correctly] [] SHIFT

[ROOT, parsed] [] parsed→correctly RIGHT-ARC

[ROOT] [] ROOT→parsed RIGHT-ARC

(b) (2 points, written) A sentence containing n words will be parsed in how many steps (in terms of n)?

Briefly explain why.

Solution: Each word of the sentence must be shifted onto the stack and then reduced away, so a

sentence containing n words will be parsed in 2n steps.

(c) (6 points, coding) Implement the init and parse step functions in the PartialParse class in

q2 parser transitions.py. This implements the transition mechanics your parser will use. You

can run basic (not-exhaustive) tests by running python q2 parser transitions.py.

(d) (6 points, coding) Our network will predict which transition should be applied next to a partial parse.

We could use it to parse a single sentence by applying predicted transitions until the parse is complete.

However, neural networks run much more efficiently when making predictions about batches of data at

a time (i.e., predicting the next transition for a many different partial parses simultaneously). We can

parse sentences in minibatches with the following algorithm.

Algorithm 1 Minibatch Dependency Parsing

Input: sentences, a list of sentences to be parsed and model, our model that makes parse decisions

Initialize partial parses as a list of partial parses, one for each sentence in sentences

Initialize unfinished parses as a shallow copy of partial parses

while unfinished parses is not empty do

Take the first batch size parses in unfinished parses as a minibatch

Use the model to predict the next transition for each partial parse in the minibatch

Perform a parse step on each partial parse in the minibatch with its predicted transition

Remove the completed parses from unfinished parses

end while

Return: The dependencies for each (now completed) parse in partial parses.

Implement this algorithm in the minibatch parse function in q2 parser transitions.py. You

can run basic (not-exhaustive) tests by running python q2 parser transitions.py.

Page 3 of 10

CS 224n: Assignment #2

Note: You will need minibatch parse to be correctly implemented to evaluate the model you will build

in part (h). However, you do not need it to train the model, so you should be able to complete most of

part (h) even if minibatch parse is not implemented yet.

We are now going to train a neural network to predict, given the state of the stack, buffer, and dependencies,

which transition should be applied next. First, the model extracts a feature vector representing the current

state. We will be using the feature set presented in the original neural dependency parsing paper: A Fast

and Accurate Dependency Parser using Neural Networks1. The function extracting these features has been

implemented for you in parser utils. This feature vector consists of a list of tokens (e.g., the last word

in the stack, first word in the buffer, dependent of the second-to-last word in the stack if there is one, etc.).

They can be represented as a list of integers

[w1, w2, ..., wm]

where m is the number of features and each 0 ≤ wi < |V | is the index of a token in the vocabulary (|V | is

the vocabulary size). First our network looks up an embedding for each word and concatenates them into a

single input vector:

x = [Lw0
,Lw1

, ...,Lwm
] ∈ Rdm

where L ∈ R|V |×d is an embedding matrix with each row Li as the vector for a particular word i. We then

compute our prediction as:

h = ReLU(xW + b1)

ŷ = softmax(hU + b2)

(recall that ReLU(z) = max(z, 0)). We evaluate using cross-entropy loss:

J(θ) = CE(y, ŷ) = −
Nc∑
i=1

yi log ŷi

To compute the loss for the training set, we average this J(θ) across all training examples.

(e) (4 points, coding) In order to avoid neurons becoming too correlated and ending up in poor local

minimina, it is often helpful to randomly initialize parameters. One of the most frequent initializations

used is called Xavier initialization2.

Given a matrix A of dimension m × n, Xavier initialization selects values Aij uniformly from [−ε, ε],
where

ε =

√
6√

m+ n

Implement the initialization in xavier weight init in q2 initialization.py. You can run

basic (nonexhaustive tests) by running python q2 initialization.py. This function will be

used to initialize W and U .

1Chen and Manning, 2014, http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf
2This is also referred to as Glorot initialization and was initially described in http://jmlr.org/proceedings/papers/

v9/glorot10a/glorot10a.pdf

Page 4 of 10

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

CS 224n: Assignment #2

(f) (2 points, written) We will regularize our network by applying Dropout3. During training this randomly

sets units in the hidden layer h to zero with probability pdrop and then multiplies h by a constant γ

(dropping different units each minibatch). We can write this as

hdrop = γd ◦ h

where d ∈ {0, 1}Dh (Dh is the size of h) is a mask vector where each entry is 0 with probability pdrop
and 1 with probability (1− pdrop). γ is chosen such that the value of hdrop in expectation equals h:

Epdrop
[hdrop]i = hi

for all 0 < i < Dh. What must γ equal in terms of pdrop? Briefly justify your answer.

Solution:

Epdrop
[hdrop]i = Epdrop

[γdihi] = pdrop(0) + (1− pdrop)γhi = (1− pdrop)γhi = hi

So γ must equal 1/(1− pdrop)

(g) (4 points, written) We will train our model using the Adam4 optimizer. Recall that standard SGD

uses the update rule

θ ← θ − α∇θJminibatch(θ)

where θ is a vector containing all of the model parameters, J is the loss function, ∇θJminibatch(θ) is

the gradient of the loss function with respect to the parameters on a minibatch of data, and α is the

learning rate. Adam uses a more sophisticated update rule with two additional steps5.

(i) First, Adam uses a trick called momentum by keeping track of m, a rolling average of the

gradients:

m← β1m+ (1− β1)∇θJminibatch(θ)

θ ← θ − αm

where β1 is a hyperparameter between 0 and 1 (often set to 0.9). Briefly explain (you don’t need

to prove mathematically, just give an intuition) how using m stops the updates from varying as

much. Why might this help with learning?

Solution: Each update will be mostly the same as the previous one (only 1−β1 of m changes

each step), so the updates won’t vary as much. One way of thinking about this is that it will stop

the model parameters from “bouncing around as much” when moving towards a local optimum.

Another way is that doing the rolling average is a bit like computing the gradient over a larger

minibatch, so each update will be closer to the true gradient over the whole dataset (i.e., lower

variance means each gradient estimate is closer to the mean).

(ii) Adam also uses adaptive learning rates by keeping track of v, a rolling average of the magnitudes

of the gradients:

m← β1m+ (1− β1)∇θJminibatch(θ)

v ← β2v + (1− β2)(∇θJminibatch(θ) ◦ ∇θJminibatch(θ))

θ ← θ − α ◦m/
√
v

3Srivastava et al., 2014, https://www.cs.toronto.edu/ hinton/absps/JMLRdropout.pdf
4Kingma and Ma, 2015, https://arxiv.org/pdf/1412.6980.pdf
5The actual Adam update uses a few additional tricks that are less important, but we won’t worry about them for this

problem.

Page 5 of 10

CS 224n: Assignment #2

where ◦ and / denote elementwise multiplication and division (so z ◦ z is elementwise squaring)

and β2 is a hyperparameter between 0 and 1 (often set to 0.99). Since Adam divides the update by√
v, which of the model parameters will get larger updates? Why might this help with learning?

Solution: The parameters with the smallest gradients (on average) will get the larger updates.

This means parameters that are at a place where the loss with respect to them is pretty flat will

get larger updates, helping them move off plateaus.

(h) (20 points, coding/written) In q2 parser model.py implement the neural network classifier govern-

ing the dependency parser by filling in the appropriate sections. We will train and evaluate our model

on the Penn Treebank (annotated with Universal Dependencies). Run python q2 parser model.py

to train your model and compute predictions on the test data (make sure to turn off debug settings

when doing final evaluation).

Hints:

• When debugging, pass the keyword argument debug=True to the main method (it is set to

true by default). This will cause the code to run over a small subset of the data, so the training

the model won’t take as long.

• This code should run within 1 hour on a CPU.

• You should be able to get a loss smaller than 0.07 on the train set and an Unlabeled Attachment

Score larger than 88 on the dev set. For comparison, the model in the original neural dependency

parsing paper gets 92.5. If you want, you can tweak the hyperparameters for your model (hidden

layer size, hyperparameters for Adam, number of epochs, etc.) to improve the performance (but

you are not required to do so).

Deliverables:

• Working implementation of the neural dependency parser in q2 parser model.py. (We’ll look

at, and possibly run this code for grading).

• Report the best UAS your model achieves on the dev set and the UAS it achieves on the test set.

• List of predicted labels for the test set in the file q2 test.predicted.

(i) Bonus (1 point). Add an extension to your model (e.g., l2 regularization, an additional hidden layer)

and report the change in UAS on the dev set. Briefly explain what your extension is and why it helps

(or hurts!) the model. Some extensions may require tweaking the hyperparameters in Config to make

them effective.

3 Recurrent Neural Networks: Language Modeling (25 points)

In this section, you’ll compute the gradients of a recurrent neural network (RNN) for language modeling.

Language modeling is a central task in NLP, and language models can be found at the heart of speech

recognition, machine translation, and many other systems. Given a sequence of words (represented as one-

hot row vectors) x(1),x(2), . . . ,x(t), a language model predicts the next word x(t+1) by modeling:

P (x(t+1) = vj | x(t), . . . ,x(1))

where vj is a word in the vocabulary.

Your job is to compute the gradients of a recurrent neural network language model, which uses feedback

Page 6 of 10

CS 224n: Assignment #2

information in the hidden layer to model the “history” x(t),x(t−1), . . . ,x(1). Formally, the model6 is, for

t = 1, . . . , n− 1:

e(t) = x(t)L

h(t) = sigmoid
(
h(t−1)H + e(t)I + b1

)
ŷ(t) = softmax

(
h(t)U + b2

)
P̄ (x(t+1) = vj | x(t), . . . ,x(1))) = ŷ

(t)
j

where h(0) = h0 ∈ RDh is some initialization vector for the hidden layer and x(t)L is the product of L with

the one-hot row vector x(t) representing the current word. The parameters are:

L ∈ R|V |×d H ∈ RDh×Dh I ∈ Rd×Dh b1 ∈ RDh U ∈ RDh×|V | b2 ∈ R|V | (1)

where L is the embedding matrix, I the input word representation matrix, H the hidden transformation

matrix, and U is the output word representation matrix. b1 and b2 are biases. d is the embedding dimension,

|V | is the vocabulary size, and Dh is the hidden layer dimension.

The output vector ŷ(t) ∈ R|V | is a probability distribution over the vocabulary. The model is trained

by minimizing the (un-regularized) cross-entropy loss:

J (t)(θ) = CE(y(t), ŷ(t)) = −
|V |∑
j=1

y
(t)
j log ŷ

(t)
j

where y(t) is the one-hot vector corresponding to the target word (which here is equal to x(t+1)). We average

the cross-entropy loss across all examples (i.e., words) in a sequence to get the loss for a single sequence.

(a) (5 points, written) Conventionally, when reporting performance of a language model, we evaluate on

perplexity, which is defined as:

PP(t)
(
y(t), ŷ(t)

)
=

1

P̄ (x
(t+1)
pred = x(t+1) | x(t), . . . ,x(1))

=
1∑|V |

j=1 y
(t)
j · ŷ

(t)
j

i.e. the inverse probability of the correct word, according to the model distribution P̄ . Show how you can

derive perplexity from the cross-entropy loss (Hint: remember that y(t) is one-hot!), and thus argue that

minimizing the (arithmetic) mean cross-entropy loss will also minimize the (geometric) mean perplexity

across the training set. This should be a very short problem - not too perplexing!

For a vocabulary of |V | words, what would you expect perplexity to be if your model predictions were

completely random (chosen uniformly from the vocabulary)? Compute the corresponding cross-entropy

loss for |V | = 10000.

Solution: Since y(t) is one-hot, suppose without loss of generality that y
(t)
i is the only nonzero element

of y(t). Then

CE(y(t), ŷ(t)) = − log ŷ
(t)
i = log

1

ŷ(t)

PP(t)(y(t), ŷ(t)) =
1

ŷ
(t)
i

6This model is adapted from a paper by Toma Mikolov, et al. from 2010: http://www.fit.vutbr.cz/research/groups/
speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

Page 7 of 10

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

CS 224n: Assignment #2

It follows that

CE(y(t), ŷ(t)) = log PP(t)(y(t), ŷ(t))

Thus minimizing the arithmetic mean of the cross-entropy is identical to minimizing the geometric mean

of the perplexity. If the model predictions are completely random, E[ŷ
(t)
i] = 1

|V | . Given that y(t) is

one-hot, the expected value of the perplexity is 1/(1/|V |) = |V |. Since the cross-entropy is the logarithm

of perplexity, the expected cross-entropy if |V | = 10000 is log 10000 ≈ 9.21.

(b) (8 points, written) Compute the gradients of the loss J with respect to the following model parameters

at a single point in time t (to save a bit of time, you don’t have to compute the gradients with the

respect to U and b1):

∂J (t)

∂b2

∂J (t)

∂Lx(t)

∂J (t)

∂I

∣∣∣∣
(t)

∂J (t)

∂H

∣∣∣∣
(t)

where Lx(t) is the row of L corresponding to the current word x(t), and
∣∣
(t)

denotes the gradient for

the appearance of that parameter at time t (equivalently, h(t−1) is taken to be fixed, and you need not

backpropagate to earlier timesteps just yet - you’ll do that in part (c)).

Additionally, compute the derivative with respect to the previous hidden layer value:

∂J (t)

∂h(t−1)

Solution:

For convenience, let

v(t) = h(t−1)H + e(t)I + b1

θ(t) = h(t)U + b2

Recall that d
dz sigmoid(z) = sigmoid(z)(1− sigmoid(z)). We can define the error signals

δ
(t)
1 =

∂J

∂θ(t)
= ŷ(t) − y(t)

δ
(t)
2 =

∂J

∂v(t)
= δ

(t)
1

∂θ(t)

∂h(t)

∂h(t)

∂v(t)
= δ

(t)
1 UT ◦ h(t) ◦ (1− h(t))

So

∂J

∂b2
=

∂J

∂θ(t)
∂θ(t)

∂b2
= δ

(t)
1

∂J

∂Lx(t)

=
∂J

∂v(t)
∂v(t)

∂e(t)
∂e(t)

∂Lx(t)

= δ
(t)
2 I

T

∂J

∂I
=

∂J

∂v(t)
∂v(t)

∂I
= (e(t))T δ

(t)
2

∂J

∂H
=

∂J

∂v(t)
∂v(t)

∂H
= (h(t−1))T δ

(t)
2

∂J

∂h(t−1) =
∂J

∂v(t)
∂v(t)

∂h(t−1) = δ
(t)
2 H

T

Page 8 of 10

CS 224n: Assignment #2

(c) (8 points, written) Below is a sketch of the network at a single timestep:

x(t)

h(t)h(t−1)

ŷ(t)

...

Draw the “unrolled” network for 3 timesteps, and compute the backpropagation-through-time gradients:

∂J (t)

∂Lx(t−1)

∂J (t)

∂I

∣∣∣∣
(t−1)

∂J (t)

∂H

∣∣∣∣
(t−1)

where
∣∣
(t−1) denotes the gradient for the appearance of that parameter at time (t− 1). Because param-

eters are used multiple times in feed-forward computation, we need to compute the gradient for each

time they appear.

You should use the backpropagation rules from Lecture 57 to express these derivatives in terms of

error term δ(t−1) = ∂J(t)

∂h(t−1) computed in the previous part. (Doing so will allow for re-use of expressions

for t− 2, t− 3, and so on).

Note that the true gradient with respect to a training example requires us to run backpropagation all

the way back to t = 0. In practice, however, we generally truncate this and only backpropagate for a fixed

number τ ≈ 5− 10 timesteps.

Solution:
x(t)

h(t)

ŷ(t)

...h(t−1)

x(t−1)

ŷ(t−1)

h(t−2)

x(t−2)

ŷ(t−2)

h(t−3)

Let σ′(v(t−1)) = ∂h(t−1)

∂v(t−1) = diag(h(t−1) ◦ (1− h(t−1)))

∂J

∂Lx(t−1)

=
∂J

∂h(t−1)
∂h(t−1)

∂v(t−1)
∂v(t−1)

∂Lx(t−1)

= δ(t−1)σ′(v(t−1))IT

∂J

∂I
=

∂J

∂h(t−1)
∂h(t−1)

∂v(t−1)
∂v(t−1)

∂I
= (e(t−1))T δ(t−1)σ′(v(t−1))

∂J

∂H
=

∂J

∂h(t−1)
∂h(t−1)

∂v(t−1)
∂v(t−1)

∂H
= (h(t−2))T δ(t−1)σ′(v(t−1))

(d) (4 points, written) Given h(t−1), how many operations are required to perform one step of forward

propagation to compute J (t)(θ)? How about backpropagation for a single step in time? For τ steps in

7https://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture5.pdf

Page 9 of 10

https://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture5.pdf

CS 224n: Assignment #2

time? Express your answer in big-O notation in terms of the dimensions d, Dh and |V | (Equation 1).

What is the slow step?

Bonus (1 point, written) Given your knowledge of similar models (i.e. word2vec), suggest a way

to speed up this part of the computation. Your approach can be an approximation, but you should ar-

gue why it’s a good one. The paper “Extensions of recurrent neural network language model” (Mikolov,

et al. 2013) may be of interest here.

Solution: Forward prop: O(|V |Dh + dDh +D2
h)

Backward prop: O(τ(|V |Dh + dDh +D2
h))

This question could be interpreted as as back-propping from a single word instead of all words in the τ

timesteps. In this case the complexity is O(|V |Dh + τ(dDh +D2
h)). However, it’s worth mentioning that

in practice doing bptt from each word one at a time is inefficient (it would take O(τ |V |Dh+τ2(dDh+D2
h))

operations).

Slow part is the O(|V |Dh) term from the matrix multiply when computing a probability distribution

over next words (assuming |V | >> Dh).

Page 10 of 10

	Tensorflow Softmax (25 points)
	Neural Transition-Based Dependency Parsing (50 points)
	Recurrent Neural Networks: Language Modeling (25 points)

