
Computing Neural Network Gradients

Kevin Clark

1 Introduction

The purpose of these notes is to demonstrate how to quickly compute neural
network gradients. This will hopefully help you with question 3 of Assignment
2 (if you haven’t already done it) and with the midterm (which will have at
least one significant gradient computation question). It is not meant to provide
an intuition for how backpropagation works – for that I recommend going over
lecture 51 and the cs231 course notes2 on backpropagation.

2 Vectorized Gradients

While it is a good exercise to compute the gradient of a neural network with re-
spect to a single parameter (e.g., a single element in a weight matrix), in practice
this tends to be quite slow. Instead, it is more efficient to keep everything in ma-
trix/vector form. The basic building block of vectorized gradients is the Jacobian
Matrix. Suppose we have a function f : Rn → Rm that maps a vector of length n
to a vector of length m: f(x) = [f1(x1, ..., xn), f2(x1, ..., xn), ..., fm(x1, ..., xn)].
Then its Jacobian is.

∂f

∂x
=

∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

That is, (∂f

∂x)ij = ∂fi
∂xj

(which is just a standard non-vector derivative). The

Jacobian matrix will be useful for us because we can apply the chain rule to a
vector-valued function just by multiplying Jacobians.

As a little illustration of this, suppose we have a function f(x) = [f1(x), f2(x)]
taking a scalar to a vector of size 2 and a function g(y) = [g1(y1, y2), g2(y1, y2)]
taking a vector of size two to a vector of size two. Now let’s compose them to
get g(x) = [g1(f1(x), f2(x)), g2(f1(x), f2(x))]. Using the regular chain rule, we

1http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture5.pdf
2http://cs231n.github.io/optimization-2/

1

can compute the derivative of g as the Jacobian

∂g

∂x
=

[
∂
∂xg1(f1(x), f2(x))
∂
∂xg2(f1(x), f2(x))

]
=

[
∂g1
∂f1

∂f1
∂x + ∂g1

∂f2

∂f2
∂x

∂g2
∂f1

∂f1
∂x + ∂g2

∂f2

∂f2
∂x

]
And we see this is the same as multiplying the two Jacobians:

∂g

∂x
=
∂g

∂f

∂f

∂x
=

[
∂g1
∂f1

∂g1
∂f2

∂g2
∂f1

∂g2
∂f2

] [
∂f1
∂x
∂f2
∂x

]

3 Useful Identities

This section will now go over how to compute the Jacobian for several simple
functions. It will provide some useful identities you can apply when taking neu-
ral network gradients.

(1) Matrix times column vector with respect to the column vector
(z = Wx, what is ∂z

∂x?)

Suppose W ∈ Rn×m. Then we can think of z as a function of x taking an
m-dimensional vector to an n-dimensional vector. So its Jacobian will be
n×m. Note that

zi =

m∑
k=1

Wikxk

So an entry (∂z
∂x)ij of the Jacobian will be

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj

m∑
k=1

Wikxk =

m∑
k=1

Wik
∂

∂xj
xk = Wij

because ∂
∂xj

xk = 1 if k = j and 0 if otherwise. So we see that
∂z

∂x
= W

(2) Row vector times matrix with respect to the row vector
(z = xW , what is ∂z

∂x?)

A computation similar to (1) shows that
∂z

∂x
= W T .

(3) A vector with itself
(z = x, what is ∂z

∂x?)
We have zi = xi. So

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj
xi =

{
1 if i = j

0 if otherwise

2

So we see that the Jacobian ∂z
∂x is a diagonal matrix where the entry at (i, i)

is 1. This is just the identity matrix:
∂z

∂x
= I . When applying the chain

rule, this term will disappear because a matrix multiplied by the identity
matrix does not change.

(4) An elementwise function applied a vector
(z = f(x), what is ∂z

∂x?)
If f is being applied elementwise, we have zi = f(xi). So

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj
f(xi) =

{
f ′(xi) if i = j

0 if otherwise

So we see that the Jacobian ∂z
∂x is a diagonal matrix where the entry at (i, i)

is the derivative of f applied to xi. We can write this as
∂z

∂x
= diag(f ′(x)) .

Since multiplication by a diagonal matrix is the same as doing elementwise

multiplication by the diagonal, we could also write ◦f ′(x) when applying

the chain rule.

(5) Matrix times column vector with respect to the matrix
(z = Wx, δ = ∂J

∂z what is ∂J
∂W = ∂J

∂z
∂z
∂W = δ ∂z

∂W ?)

This is a bit more complicated than the other identities. The reason for in-
cluding ∂J

∂z in the above problem formulation will become clear in a moment.

First suppose we have a loss function J (a scalar) and are computing its
gradient with respect to a matrix W ∈ Rn×m. Then we could think of J as
a function of W taking nm inputs (the entries of W) to a single output (J).
This means the Jacobian ∂J

∂W would be a 1 × nm vector. But in practice
this is not a very useful way of arranging the gradient. It would be much
nicer if the derivatives were in a n×m matrix like this:

∂J

∂W
=

∂J

∂W11
. . . ∂J

∂W1m

...
. . .

...
∂J

∂Wn1
. . . ∂J

∂Wnm

Since this matrix has the same shape as W , we could just subtract it (times
the learning rate) fromW when doing gradient descent. So (in a slight abuse
of notation) let’s find this matrix as ∂J

∂W instead.

This way of arranging the gradients becomes complicated when computing
∂z
∂W . Unlike J , z is a vector. So if we are trying to rearrange the gradients

like with ∂J
∂W , ∂z

∂W would be an n ×m × n tensor! Luckily, we can avoid
the issue by taking the gradient with respect to a single weight Wij instead.

3

∂z
∂Wij

is just a vector, which is much easier to deal with. We have

zk =

m∑
l=1

Wklxl

∂zk
∂Wij

=

m∑
l=1

xl
∂

∂Wij
Wkl

Note that ∂
∂Wij

Wkl = 1 if i = k and j = l and 0 if otherwise. So if k 6= i

everything in the sum is zero and the gradient is zero. Otherwise, the only
nonzero element of the sum is when l = j, so we just get xj . Thus we find
∂zk
∂Wij

= xj if k = i and 0 if otherwise. Another way of writing this is

∂z

∂Wij
=

0
...
0
xj
0
...
0

← ith element

Now let’s compute ∂J
∂Wij

∂J

∂Wij
=
∂J

∂z

∂z

∂Wij
= δ

∂z

∂Wij
=

m∑
k=1

δk
∂zk
∂Wij

= δixj

(the only nonzero term in the sum is δi
∂zi
∂Wij

). To get ∂J
∂W we want a ma-

trix where entry (i, j) is δixj . This matrix is equal to the outer product

∂J

∂W
= δTx

(6) Row vector time matrix with respect to the matrix
(z = xW , δ = ∂J

∂z what is ∂J
∂W = δ ∂z

∂W ?)

A similar computation to (5) shows that
∂J

∂W
= xT δ .

(7) Cross-entropy loss with respect to logits (ŷ = softmax(θ), J =
CE(y, ŷ), what is ∂J

∂θ ?)

You computed this in Assignment 1! The gradient is
∂J

∂θ
= ŷ − y

(or (ŷ − y)T if y is a column vector).

4

These identities will be enough to let you quickly compute the gradients for many
neural networks. However, it’s important to know how to compute Jacobians
for other functions as well in case they show up. Some examples if you want
practice: dot product of two vectors, elementwise product of two vectors, 2-norm
of a vector. Feel free to use these identities on the midterm and assignments.

4 Example: 1-Layer Neural Network with Embeddings

This section provides an example of computing the gradients of a full neural
network. In particular we are going to compute the gradients of the dependency
parser you are building in Assignment 2. First let’s write out the forward pass
of the model.

x = [Lw0
,Lw1

, ...,Lwm−1
]

z = xW + b1

h = ReLU(z)

θ = hU + b2

ŷ = softmax(θ)

J = CE(y, ŷ)

It helps to break up the model into the simplest parts possible, so note that
we defined z and θ to split up the activation functions from the linear trans-
formations in the network’s layers. The dimensions of the model’s parameters
are

L ∈ R|V |×d b1 ∈ R1×Dh W ∈ Rmd×Dh b2 ∈ R1×Nc U ∈ RDh×Nc

where |V | is the vocabulary size, d is the size of our word vectors, m is the
number of features, Dh is the size of our hidden layer, and Nc is the number of
classes.

In this example, we will compute all the gradients:

∂J

∂U

∂J

∂b2

∂J

∂W

∂J

∂b1

∂J

∂Lwi

To start with, recall that ReLU(x) = max(x, 0). This means

ReLU′(x) =

{
1 if x > 0

0 if otherwise
= sgn(ReLU(x))

where sgn is the signum function. Note that as you did in Assignment 1 with
sigmoid, we are able to write the derivative of the activation in terms of the
activation itself.

5

Now let’s write out the chain rule for ∂J
∂U and ∂J

∂b2
:

∂J

∂U
=
∂J

∂ŷ

∂ŷ

∂θ

∂θ

∂U

∂J

∂b2
=
∂J

∂ŷ

∂ŷ

∂θ

∂θ

∂b2

Notice that ∂J
∂ŷ

∂ŷ
∂θ = ∂J

∂θ is present in both gradients. This makes the math a bit
cumbersome. Even worse, if we’re implementing the model without automatic
differentiation, computing ∂J

∂θ twice will be inefficient. So it will help us to define
some variables to represent the intermediate derivatives:

δ1 =
∂J

∂θ
δ2 =

∂J

∂z

These can be thought as the error signals passed down to θ and z when doing
backpropagation. We can compute them as follows:

δ1 =
∂J

∂θ
= ŷ − y this is just identity (7)

δ2 =
∂J

∂z
=
∂J

∂θ

∂θ

∂h

∂h

∂z
using the chain rule

= δ1
∂θ

∂h

∂h

∂z
substituting in δ1

= δ1 U
T ∂h

∂z
using identity (2)

= δ1 U
T ◦ ReLU′(z) using identity (4)

= δ1 U
T ◦ sgn(h) we computed this earlier

A good way of checking our work is by looking at the dimensions of the terms
in the derivative:

∂J

∂z
= δ1 UT ◦ sgn(h)

(1×Dh) (1×Nc) (Nc ×Dh) (Dh)

We see that the dimensions of all the terms in the gradient match up (i.e., the
number of columns in a term equals the number of rows in the next term). This
will always be the case if we computed our gradients correctly.

6

Now we can use the error terms to compute our gradients:

∂J

∂U
=
∂J

∂θ

∂θ

∂U
= δ1

∂θ

∂U
= hT δ1 using identity (6)

∂J

∂b2
=
∂J

∂θ

∂θ

∂b2
= δ1

∂θ

∂b2
= δ1 using identity (3)

∂J

∂W
=
∂J

∂θ

∂z

∂W
= δ2

∂z

∂W
= xT δ2 using identity (6)

∂J

∂b1
=
∂J

∂θ

∂z

∂b1
= δ2

∂z

∂b1
= δ2 using identity (3)

∂J

∂Lwi

=
∂J

∂z

∂z

∂Lwi

= δ2
∂z

∂Lwi

All that’s left is to compute ∂z
∂Lwi

. It helps to split up W by rows like this:

xW = [Lw0
,Lw1

, ...,Lwm−1
]W = [Lw0

,Lw1
, ...,Lwm−1

]

W0:d

Wd:2d

...
W(m−1)d:md

= Lw0W0:d +Lw1Wd:2d + · · ·+Lwm−1W(m−1)d:md =

m−1∑
j=0

LwjWdj:d(j+1)

When we compute ∂z
∂Lwi

, only the ith term in this sum is nonzero, so we get

∂z

∂Lwi

=
∂

∂Lwi

= Lwi
Wdi:d(i+1) = (Wdi:d(i+1))

T

using identity (2).

7

