
CS224n: Natural Language Processing with Deep
Learning1

1 Course Instructors: Christopher
Manning, Richard Socher

Lecture Notes: Part VI2
2 Authors: Guillaume Genthial, Lucas
Liu, Barak Oshri, Kushal Ranjan

Winter 2017

Keyphrases: Seq2Seq and Attention Mechanisms, Neural Machine
Translation, Speech Processing

1 Neural Machine Translation with Seq2Seq

So far in this class, we’ve dealt with problems of predicting a single
output: an NER label for a word, the single most likely next word in
a sentence given the past few, and so on. However, there’s a whole
class of NLP tasks that rely on sequential output, or outputs that are
sequences of potentially varying length. For example,

• Translation: taking a sentence in one language as input and out-
putting the same sentence in another language.

• Conversation: taking a statement or question as input and re-
sponding to it.

• Summarization: taking a large body of text as input and out-
putting a summary of it.

In these notes, we’ll look at sequence-to-sequence models, a deep
learning-based framework for handling these types of problems. This
framework proved to be very effective, and has, in fewer than 3 years,
become the standard for machine translation.

1.1 Brief Note on Historical Approaches

In the past, translation systems were based on probabilistic models
constructed from:

• a translation model, telling us what a sentence/phrase in a source
language most likely translates into

• a language model, telling us how likely a given sentence/phrase is
overall.

These components were used to build translation systems based on
words or phrases. As you might expect, a naive word-based system
would completely fail to capture differences in ordering between
languages (e.g. where negation words go, location of subject vs. verb
in a sentence, etc).

cs224n: natural language processing with deep learning 2

Phrase-based systems were most common prior to Seq2Seq. A
phrase-based translation system can consider inputs and outputs in
terms of sequences of phrases and can handle more complex syntaxes
than word-based systems. However, long-term dependencies are still
difficult to capture in phrase-based systems.

The advantage that Seq2Seq brought to the table, especially with
its use of LSTMs, is that modern translation systems can generate
arbitrary output sequences after seeing the entire input. They can
even focus in on specific parts of the input automatically to help
generate a useful translation.

1.2 Sequence-to-sequence Basics

Sequence-to-sequence, or "Seq2Seq", is a relatively new paradigm,
with its first published usage in 2014 for English-French translation
3. At a high level, a sequence-to-sequence model is an end-to-end 3 Sutskever et al. 2014, "Sequence

to Sequence Learning with Neural
Networks"

model made up of two recurrent neural networks:

• an encoder, which takes the model’s input sequence as input and
encodes it into a fixed-size "context vector", and

• a decoder, which uses the context vector from above as a "seed"
from which to generate an output sequence.

For this reason, Seq2Seq models are often referred to as "encoder-
decoder models." We’ll look at the details of these two networks
separately.

1.3 Seq2Seq architecture - encoder

The encoder network’s job is to read the input sequence to our
Seq2Seq model and generate a fixed-dimensional context vector C
for the sequence. To do so, the encoder will use a recurrent neural
network cell – usually an LSTM – to read the input tokens one at a
time. The final hidden state of the cell will then become C. However,
because it’s so difficult to compress an arbitrary-length sequence into
a single fixed-size vector (especially for difficult tasks like transla-
tion), the encoder will usually consist of stacked LSTMs: a series of
LSTM "layers" where each layer’s outputs are the input sequence to
the next layer. The final layer’s LSTM hidden state will be used as C.

Seq2Seq encoders will often do something strange: they will pro-
cess the input sequence in reverse. This is actually done on purpose.
The idea is that, by doing this, the last thing that the encoder sees
will (roughly) corresponds to the first thing that the model outputs;
this makes it easier for the decoder to "get started" on the output,
which makes then gives the decoder an easier time generating a

cs224n: natural language processing with deep learning 3

proper output sentence. In the context of translation, we’re allowing
the network to translate the first few words of the input as soon as
it sees them; once it has the first few words translated correctly, it’s
much easier to go on to construct a correct sentence than it is to do
so from scratch. See Fig. 1 for an example of what such an encoder
network might look like.

Figure 1: Example of a Seq2Seq encoder
network. This model may be used to
translate the English sentence "what
is your name?" Note that the input
tokens are read in reverse. Note that the
network is unrolled; each column is a
timestep and each row is a single layer,
so that horizontal arrows correspond
to hidden states and vertical arrows are
LSTM inputs/outputs.

1.4 Seq2Seq architecture - decoder

The decoder is also an LSTM network, but its usage is a little more
complex than the encoder network. Essentially, we’d like to use it
as a language model that’s "aware" of the words that it’s generated
so far and of the input. To that end, we’ll keep the "stacked" LSTM
architecture from the encoder, but we’ll initialize the hidden state of
our first layer with the context vector from above; the decoder will
literally use the context of the input to generate an output.

Once the decoder is set up with its context, we’ll pass in a special
token to signify the start of output generation; in literature, this is
usually an <EOS> token appended to the end of the input (there’s
also one at the end of the output). Then, we’ll run all three layers of
LSTM, one after the other, following up with a softmax on the final
layer’s output to generate the first output word. Then, we pass that
word into the first layer, and repeat the generation. This is how we get
the LSTMs to act like a language model. See Fig. 2 for an example of
a decoder network.

Once we have the output sequence, we use the same learning strat-
egy as usual. We define a loss, the cross entropy on the prediction
sequence, and we minimize it with a gradient descent algorithm and
back-propagation. Both the encoder and decoder are trained at the
same time, so that they both learn the same context vector represen-
tation.

1.5 Recap & Basic NMT Example

Note that there is no connection between the lengths of the input
and output; any length input can be passed in and any length output
can be generated. However, Seq2Seq models are known to lose effec-
tiveness on very long inputs, a consequence of the practical limits of
LSTMs.

To recap, let’s think about what a Seq2Seq model does in order to
translate the English "what is your name" into the French "comment
t’appelles tu". First, we start with 4 one-hot vectors for the input.
These inputs may or may not (for translation, they usually are) em-
bedded into a dense vector representation. Then, a stacked LSTM
network reads the sequence in reverse and encodes it into a context

cs224n: natural language processing with deep learning 4

vector. This context vector is a vector space representation of the no-
tion of asking someone for their name. It’s used to initialize the first
layer of another stacked LSTM. We run one step of each layer of this
network, perform softmax on the last layer’s output, and use that to
select our first output word. This word is fed back into the network
as input, and the rest of the sentence "comment t’appelles tu" is de-
coded in this fashion. During backpropagation, the encoder’s LSTM
weights are updated so that it learns a better vector space representa-
tion for sentences, while the decoder’s LSTM weights are trained to
allow it to generate gramatically correct sentences that are relevant to
the context vector.

Figure 2: Example of a Seq2Seq decoder
network. This decoder is decoding the
context vector for "what is your name"
(see Fig. 1 into its French translation,
"comment t’appeles tu?" Note the
special "GO" token used at the start of
generation, and that generation is in
the forward direction as opposed to the
input which is read in reverse. Note
also that the input and output do not
need to be the same length.

1.6 Bidirectional RNNs

Recall from earlier in this class that dependencies in sentences don’t
just work in one direction; a word can have a dependency on another
word before or after it. The formulation of Seq2Seq that we’ve talked
about so far doesn’t account for that; at any timestep, we’re only
considering information (via the LSTM hidden state) from words
before the current word. For NMT, we need to be able to effectively
encode any input, regardless of dependency directions within that
input, so this won’t cut it.

Bidirectional RNNs fix this problem by traversing a sequence in
both directions and concatenating the resulting outputs (both cell
outputs and final hidden states). For every RNN cell, we simply
add another cell but feed inputs to it in the opposite direction; the
output ot corresponding to the t’th word is the concatenated vector[

o(f)
t o(b)t

]
, where o(f)

t is the output of the forward-direction RNN

on word t and o(b)t is the corresponding output from the reverse-

direction RNN. Similarly, the final hidden state is h =
[

h(f) h(b)
]
,

where h(f) is the final hidden state of the forward RNN and h(b) is
the final hidden state of the reverse RNN. See Fig. 6 for an example
of a bidirectional LSTM encoder.

Figure 3: Example of a single-layer
bidirectional LSTM encoder network.
Note that the input is fed into two
different LSTM layers, but in different
directions, and the hidden states are
concatenated to get the final context
vector.

2 Attention Mechanism

2.1 Motivation

When you hear the sentence "the ball is on the field," you don’t as-
sign the same importance to all 6 words. You primarily take note of
the words "ball," "on," and "field," since those are the words that are
most "important" to you. Similarly, Bahdanau et al. noticed the flaw
in using the final RNN hidden state as the single "context vector" for
sequence-to-sequence models: often, different parts of an input have

cs224n: natural language processing with deep learning 5

different levels of significance. Moreover, different parts of the output
may even consider different parts of the input "important." For exam-
ple, in translation, the first word of output is usually based on the first
few words of the input, but the last word is likely based on the last
few words of input.

Attention mechanisms make use of this observation by providing
the decoder network with a look at the entire input sequence at every
decoding step; the decoder can then decide what input words are
important at any point in time. There are many types of encoder
mechanisms, but we’ll examine the one introduced by Bahdanau et
al. 4, 4 Bahdanau et al. 2014, "Neural Machine

Translation by Jointly Learning to Align
and Translate"

2.2 Bahdanau et al. NMT model

Remember that our seq2seq model is made of two parts, an encoder
that encodes the input sentence, and a decoder that leverages the
information extracted by the decoder to produce the translated sen-
tence. Basically, our input is a sequence of words x1, . . . , xn that we
want to translate, and our target sentence is a sequence of words
y1, . . . , ym.

1. Encoder

Let (h1, . . . , hn) be the hidden vectors representing the input sen-
tence. These vectors are the output of a bi-LSTM for instance, and
capture contextual representation of each word in the sentence.

2. Decoder

We want to compute the hidden states si of the decoder using a
recursive formula of the form

si = f (si−1, yi−1, ci)

where si−1 is the previous hidden vector, yi−1 is the generated
word at the previous step, and ci is a context vector that capture
the context from the original sentence that is relevant to the time
step i of the decoder.

The context vector ci captures relevant information for the i-th
decoding time step (unlike the standard Seq2Seq in which there’s
only one context vector). For each hidden vector from the original
sentence hj, compute a score

ei,j = a(si−1, hj)

where a is any function with values in R, for instance a single
layer fully-connected neural network. Then, we end up with a

cs224n: natural language processing with deep learning 6

sequence of scalar values ei,1, . . . , ei,n. Normalize these scores into a
vector αi = (αi,1, . . . , αi,n), using a softmax layer. The vector αi is called the attention

vector

αi,j =
exp(ei,j)

∑n
k=1 exp(ei,k)

Then, compute the context vector ci as the weighted average of the
hidden vectors from the original sentence The context vector is extracted thanks

to the attention vector and captures the
relevant context

ci =
n

∑
j=1

αi,jhj

Intuitively, this vector captures the relevant contextual information
from the original sentence for the i-th step of the decoder.

2.3 Connection with translation alignment

Figure 4: Example of an alignment table

The attention-based model learns to assign significance to differ-
ent parts of the input for each step of the output. In the context of
translation, attention can be thought of as "alignment." Bahdanau et
al. argue that the attention scores αij at decoding step i signify the
words in the source sentence that align with word i in the target.
Noting this, we can use attention scores to build an alignment table –
a table mapping words in the source to corresponding words in the
target sentence – based on the learned encoder and decoder from our
Seq2Seq NMT system.

2.4 Performance on long sentences

Figure 5: Performance on long sentence
of different NMT models - image taken
from Luong et al.

The major advantage of attention-based models is their ability to
efficiently translate long sentences. As the size of the input grows,
models that do not use attention will miss information and precision
if they only use the final representation. Attention is a clever way to
fix this issue and experiments indeed confirm the intuition.

3 Other Models

3.1 Huong et al. NMT model

We present a variant of this first model, with two different mecha-
nisms of attention, from Luong et al.5. 5 Effective Approaches to Attention-

based Neural Machine Translation by
Minh-Thang Luong, Hieu Pham and
Christopher D. Manning

• Global attention We run our vanilla Seq2Seq NMT. We call the
hidden states given by the encoder h1, . . . , hn, and the hidden
states of the decoder h̄1, . . . , h̄n. Now, for each h̄i, we compute an

cs224n: natural language processing with deep learning 7

attention vector over the encoder hidden. We can use one of the
following scoring functions:

score(hi, h̄j) =

hT

i h̄j

hT
i Wh̄j

W[hi, h̄j]

∈ R

Now that we have a vector of scores, we can compute a context
vector in the same way as Bahdanau et al. First, we normalize the
scores via a softmax layer to obtain a vector αi = (αi,1, . . . , αi,n),

where αi,j =
exp(score(hj ,h̄i))

∑n
k=1 exp(score(hk ,h̄i))

ci =
n

∑
j=1

αi,jhj

and we can use the context vector and the hidden state to compute
a new vector for the i-th time step of the decoder

h̃i = f ([h̄i, ci])

The final step is to use the h̃i to make the final prediction of the
decoder. To address the issue of coverage, Luong et al. also use
an input-feeding approach. The attentional vectors h̃i are fed as
input to the decoder, instead of the final prediction. This is similar
to Bahdanau et al., who use the context vectors to compute the
hidden vectors of the decoder.

• Local attention the model predicts an aligned position in the in-
put sequence. Then, it computes a context vector using a window
centered on this position. The computational cost of this atten-
tion step is constant and does not explode with the length of the
sentence.

The main takeaway of this discussion is to show that they are lots
of ways of doing attention.

3.2 Google’s new NMT

As a brief aside, Google recently made a major breakthrough for
NMT via their own translation system 6. Rather than maintain a full 6 Johnson et el. 2016, "Google’s Mul-

tilingual Neural Machine Translation
System: Enabling Zero-Shot Transla-
tion"

Seq2Seq model for every pair of language that they support – each of
which would have to be trained individually, which is a tremendous
feat in terms of both data and compute time required – they built a
single system that can translate between any two languages. This is a
Seq2Seq model that accepts as input a sequence of words and a token

cs224n: natural language processing with deep learning 8

specifying what language to translate into. The model uses shared
parameters to translate into any target language.

Figure 6: Example of Google’s system
The new multilingual model not only improved their translation

performance, it also enabled "zero-shot translation," in which we can
translate between two languages for which we have no translation train-
ing data. For instance, if we only had examples of Japanese-English
translations and Korean-English translations, Google’s team found
that the multilingual NMT system trained on this data could actu-
ally generate reasonable Japanese-Korean translations. The powerful
implication of this finding is that part of the decoding process is not
language-specific, and the model is in fact maintaining an internal
representation of the input/output sentences independent of the
actual languages involved.

3.3 More advanced papers using attention

• Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention by Kelvin Xu, Jimmy Lei Ba,Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel
and Yoshua Bengio. This paper learns words/image alignment.

• Modeling Coverage for Neural Machine Translation by Zhaopeng Tu,
Zhengdong Lu, Yang Liu, Xiaohua Liu and Hang Li. Their model
uses a coverage vector that takes into account the attention history
to help future attention.

• Incorporating Structural Alignment Biases into an Attentional Neural
Translation Model by Cohn, Hoang, Vymolova, Yao, Dyer, Haffari.
This paper improves the attention by incorporating other tradi-
tional linguistic ideas.

4 Sequence model decoders

Another approach to machine translation comes from statistical ma-
chine translation. Consider a model that computes the probability
P(s̄|s) of a translation s̄ given the original sentence s. We want to
pick the translation s̄∗ that has the best probability. In other words,
we want

s̄∗ = argmaxs̄(P(s̄|s))

As the search space can be huge, we need to shrink its size. Here
is a list of sequence model decoders (both good ones and bad ones).

• Exhaustive search : this is the simplest idea. We compute the
probability of every possible sequence, and we chose the sequence

cs224n: natural language processing with deep learning 9

with the highest probability. However, this technique does not
scale at all to large outputs as the search space is exponential in
the size of the input. Decoding in this case is an NP-complete
problem.

• Ancestral sampling : at time step t, we sample xt based on the
conditional probability of the word at step t given the past. In
other words,

xt ∼ P(xt|x1, . . . , xn)

Theoretically, this technique is efficient and asymptotically ex-
act. However, in practice, it can have low performance and high
variance.

• Greedy Search : At each time step, we pick the most probable
token. In other words

xt = argmaxx̃t
P(x̃t|x1, . . . , xn)

This technique is efficient and natural, however it explores a small
part of the search space and if we make a mistake at one time step,
the rest of the sentence could be heavily impacted.

• Beam search : the idea is to maintain K candidates at each time
step.

Ht = {(x1
1, . . . , x1

t), . . . , (xK
1 , . . . , xK

t)}

and compute Ht+1 by expanding Ht and keeping the best K candi-
dates. In other words, we pick the best K sequence in the following
set

H̃t+1 =
K⋃

k=1

˜Hk
t+1

where

˜Hk
t+1 = {(xk

1, . . . , xk
t , v1), . . . , (xk

1, . . . , xk
t , v|V|)}

As we increase K, we gain precision and we are asymptotically
exact. However, the improvement is not monotonic and we can
set a K that combines reasonable performance and computational
efficiency. For this reason, beam search is the most commonly used
technique in NMT.

cs224n: natural language processing with deep learning 10

5 Evaluation of Machine Translation Systems

Now that we know the basics about machine translation systems, we
discuss some ways that these models are evaluated. Evaluating the
quality of translations is a notoriously tricky and subjective task. In
real-life, if you give a paragraph of text to ten different translators,
you will get back ten different translations. Translations are imperfect
and noisy in practice. They attend to different information and em-
phasize different meanings. One translation can preserve metaphors
and the integrity of long-randing ideas, while the other can achieve a
more faithful reconstruction of syntax and style, attempting a word-
to-word translation. Note that this flexibility is not a burden; it is a
testament to the complexity of language and our abilities to decode
and interpret meaning, and is a wonderful aspect of our communica-
tive faculty.

At this point, you should note that there is a difference between
the objective loss function of your model and the evaluation methods
we are going to discuss. Since loss functions are in essence an evalua-
tion of your model prediction, it can be easy to confuse the two ideas.
The evaluation metrics ahead offer a final, summative assessment of
your model against some measurement criterion, and no one mea-
surement is superior to all others, though some have clear advantages
and majority preference.

Evaluating the quality of machine learning translations has be-
come it own entire research area, with many proposals like TER,
METEOR, MaxSim, SEPIA, and RTE-MT. We will focus in these notes
on two baseline evaluation methods and BLEU.

5.1 Human Evaluation

The first and maybe least surprising method is to have people manu-
ally evaluate the correctness, adequacy, and fluency of your system.
Like the Turing Test, if you can fool a human into not being able to
distinguish a human-made translation with your system translation,
your model passes the test for looking like a real-life sentence! The
obvious problem with this method is that it is costly and inefficient,
though it remains the gold standard for machine translation.

5.2 Evaluation against another task

A common way of evaluating machine learning models that output
a useful representation of some data (a representation being a trans-
lation or summary) is that if your predictions are useful for solving
some challenging task, then the model must be encoding relevant
information in your predictions. For example, you might think of

cs224n: natural language processing with deep learning 11

training your translation predictions on a question-answering task in
the translated language. That is, you use the outputs of your system
as inputs to a model for some other task (the question-answering).
If your second task can perform as well on your predictions as it
can on well-formed data in the translated language, it means that
your inputs have the relevant information or patterns for meeting the
demands of the task.

The issue with this method is that the second task may not be af-
fected by many of the finer points of translation. For example, if you
measured the quality of translation on a query-retrieval task (like
pulling up the right webpage for a search query), you would find
that a translation that preserves the main topic words of the docu-
ments but ignores syntax and grammar might still fit the task well.
But this itself doesn’t mean that the quality of your translations is
accurate or faithful. Therefore, determining the quality of the transla-
tion model is just shifted to determining the quality of the task itself,
which may or may not be a good standard.

5.3 Bilingual Evaluation Understudy (BLEU)

In 2002, IBM researchers developed the Bilingual Evaluation Under-
study (BLEU) that remains, with its many variants to this day, one of
the most respected and reliable methods for machine translation.

The BLEU algorithm evaluates the precision score of a candidate
machine translation against a reference human translation. The ref-
erence human translation is a assumed to be a model example of a
translation, and we use n-gram matches as our metric for how similar
a candidate translation is to it. Consider a reference sentence A and
candidate translation B:

A there are many ways to evaluate the quality of a translation, like
comparing the number of n-grams between a candidate transla-
tion and reference.

B the quality of a translation is evaluate of n-grams in a reference
and with translation.

The BLEU score looks for whether n-grams in the machine trans-
lation also appear in the reference translation. Color-coded below are
some examples of different size n-grams that are shared between the
reference and candidate translation.

A there are many ways to evaluate the quality of a translation, like
comparing the number of n-grams between a candidate transla-
tion and reference.

cs224n: natural language processing with deep learning 12

B the quality of a translation is evaluate of n-grams in a reference
and with translation.

The BLEU algorithm identifies all such matches of n-grams above,
including the unigram matches, and evaluates the strength of the
match with the precision score. The precision score is the fraction of
n-grams in the translation that also appear in the reference.

The algorithm also satisfies two other constraints. For each n-gram
size, a gram in the reference translation cannot be matched more than
once. For example, the unigram "a" appears twice in B but only once
in A. This only counts for one match between the sentences. Addi-
tionally, we impose a brevity penalty so that very small sentences
that would achieve a 1.0 precision (a "perfect" matching) are not
considered good translations. For example, the single word "there"
would achieve a 1.0 precision match, but it is obviously not a good
match.

Let us see how to actually compute the BLEU score. First let k be
the maximum n-gram that we want to evaluate our score on. That
is, if k = 4, the BLUE score only counts the number of n-grams with
length less than or equal to 4, and ignores larger n-grams. Let

pn = # matched n-grams / # n-grams in candidate translation

the precision score for the grams of length n. Finally, let wn = 1/2n

be a geometric weighting for the precision of the n’th gram. Our
brevity penalty is defined as

β = emin(0,1− lenref
lenMT

)

where lenref is the length of the reference translation and lenMT is
the length of the machine translation.

The BLEU score is then defined as

BLEU = β
k

∏
i=1

pwn
n

The BLEU score has been reported to correlate well with human
judgment of good translations, and so remains a benchmark for all
evaluation metrics following it. However, it does have many limi-
tations. It only works well on the corpus level because any zeros in
precision scores will zero the entire BLEU score. Additionally, this
BLEU score as presented suffers for only comparing a candidate
translation against a single reference, which is surely a noisy repre-
sentation of the relevant n-grams that need to be matched. Variants
of BLEU have modified the algorithm to compare the candidate with
multiple reference examples. Additionally, BLEU scores may only be

cs224n: natural language processing with deep learning 13

a necessary but not sufficient benchmark to pass for a good machine
translation system. Many researchers have optimized BLEU scores
until they have begun to approach the same BLEU scores between
reference translations, but the true quality remains far below human
translations.

6 Dealing with the large output vocabulary

Despite the success of modern NMT systems, they have a hard time
dealing with large vocabulary size. Specifically, these Seq2Seq models
predict the next word in the sequence by computing a target proba-
bilistic distribution over the entire vocabulary using softmax. It turns
out that softmax can be quite expensive to compute with a large
vocabulary and its complexity also scales proportionally to the vocab-
ulary size. We will now examine a number of approaches to address
this issue.

6.1 Scaling softmax

A very natural idea is to ask "can we find more efficient ways to com-
pute the target probabilistic distribution?" The answer is Yes! In fact,
we’ve already learned two methods that can reduce the complexity of
"softmax", which we’ll present a high-level review below (see details
in lecture note 1).

1. Noise Contrastive Estimation

The idea of NCE is to approximate "softmax" by randomly sam-
pling K words from negative samples. As a result, we are reduc-
ing the computational complexity by a factor of |V|K , where |V| is
the vocabulary size. This method has been proven sucessful in
word2vec. A recent work by Zoph et al.7 applied this technique to 7 Zoph et al. 2016, Simple, Fast Noise-

Contrastive Estimation for Large RNN
Vocabularies

learning LSTM language models and they also introduced a trick
by using the same samples per mini-batch to make the training
GPU-efficient.

2. Hierarchical Softmax

Morin et al.8 introduced a binary tree structure to more efficently 8 Morin et al. 2005, Hierarchical Proba-
bilistic Neural Network Language Modelcompute "softmax". Each probability in the target distribution

is calculated by taking a path down the tree which only takes
O(log|V|) steps. Notably, even though Hierarchical Softmax saves
computation, it cannot be easily parallelized to run efficiently on
GPU. This method is used by Kim et al. 9 to train character-based 9 Kim et al. 2015, Character-Aware Neural

Language Modelslanguage models which will be covered in lecture 13.

One limitation for both methods is that they only save computa-
tion during training step (when target word is known). At test time,

cs224n: natural language processing with deep learning 14

one still has to compute the probability of all words in the vocabulary
in order to make predictions.

6.2 Reducing vocabulary

Instead of optimizing "softmax", one can also try to reduce the ef-
fective vocabulary size which will speed up both training and test
steps. A naive way of doing this is to simply limit the vocabulary size
to a small number and replace words outside the vocabulary with
a tag <UNK>. Now, both training and test time can be significantly
reduced but this is obviously not ideal because we may generate
outputs with lots of <UNK>.

Jean et al. 10 proposed a method to maintain a constant vocab- 10 Jean et al. 2015, On Using Very Large
Target Vocabulary for Neural Machine
Translation

ulary size |V′| by partitioning the training data into subsets with τ

unique target words, where τ = |V′|. One subset can be found by se-
quentially scanning the original data set until τ unique target words
are detected(Figure 7). And this process is iterated over the entire
data set to produce all mini-batch subsets. In practice, we can achieve
about 10x saving with |V| = 500K and |V′| = 30K, 50K.

Figure 7: Training data partition

This concept is very similar to NCE in that for any given word,
the output vocabulary contains the target word and |V′| − 1 negative
(noise) samples. However, the main difference is that these negative
samples are sampled from a biased distribution Q for each subset V’
where

Q(yt) =

 1
|V′ | , i f yt ∈ |V′|
0, otherwise

At test time, one can similarly predict target word out of a selected
subset, called candidate list, of the entire vocabulary. The challenge
is that the correct target word is unknown and we have to "guess"
what the target word might be. In the paper, the authors proposed
to construct a candidate list for each source sentence using K most
frequent words (based on unigram probability) and K’ likely target
words for each source word in the sentence. In Figure 8), an example
is shown with K′ = 3 and the candidate list consists of all the words
in purple boxes. In practice, one can choose the following values:
K = 15k, 30k, 50k and K′ = 10, 20.

Figure 8: Candidate list6.3 Handling unknown words

When NMT systems use the techniques mentioned above to reduce
effective vocabulary size, inevitably, certain words will get mapped to
<UNK>. For instance, this could happen when the predicted word,
usually rare word, is out of the candidate list or when we encounter

cs224n: natural language processing with deep learning 15

unseen words at test time. We need new mechanisms to address the
rare and unknown word problems.

Figure 9: Pointer network Architecture

One idea introduced by Gulcehre et al.11 to deal with these prob-

11 Gulcehre et al. 2016, Pointing the
Unknown Words

lems is to learn to "copy" from source text. The model (Figure 9)
applies attention distribution lt to decide where to point in the source
text and uses the decoder hidden state St to predict a binary variable
Zt which decides when to copy from source text. The final prediction
is either the word yw

t chosen by softmax over candidate list, as in pre-
vious methods, or yl

t copied from source text depending on the value
of Zt. They showed that this method improves performance in tasks
like machine translation and text summarization.

As one can imagine, there are of course limitations to this method.
It is important to point out a comment from Google’s NMT paper12 12 Wu et al. 2016, Google’s Neural Ma-

chine Translation System: Bridging the Gap
between Human and Machine Translation

on this method, " this approach is both unreliable at scale — the attention
mechanism is unstable when the network is deep — and copying may not
always be the best strategy for rare words — sometimes transliteration is
more appropriate".

7 Word and character-based models

As discussed in section 6, "copy" mechanisms are still not sufficient
in dealing with rare or unknown words. Another direction to address
these problems is to operate at sub-word levels. One trend is to use
the same seq2seq architecture but operate on a smaller unit — word
segmentation, character-based models. Another trend is to embrace
hybrid architectures for words and characters.

7.1 Word segmentation

Sennrich et al. 13 proposed a method to enable open-vocabulary 13 Sennrich et al. 2016, Neural Machine
Translation of Rare Words with Subword
Units

translation by representing rare and unknown words as a sequence of
subword units.

Figure 10: Byte Pair Encoding

This is achieved by adapting a compression algorithm called Byte
Pair Encoding. The essential idea is to start with a vocabulary of
characters and keep extending the vocabulary with most frequent
n-gram pairs in the data set. For instance, in Figure 10, our data
set contains 4 words with their frequencies on the left, i.e. "low"
appears 5 times. Denote (p, q, f) as a n-gram pair p, q with frequency
f. In this figure, we’ve already selected most frequent n-gram pair
(e,s,9) and now we are adding current most frequent n-gram pair
(es,t,9). This process is repeated until all n-gram pairs are selected or
vocabulary size reaches some threshold.

One can choose to either build separate vocabularies for training
and test sets or build one vocabulary jointly. After the vocabulary

cs224n: natural language processing with deep learning 16

is built, an NMT system with some seq2seq architecture (the paper
used Bahdanau et al. 14), can be directly trained on these word seg- 14 Bahdanau et al. 2014, "Neural Ma-

chine Translation by Jointly Learning to
Align and Translate"

ments. Notably, this method won top places in WMT 2016.

7.2 Character-based model

Ling et al. 15 proposed a character-based model to enable open- 15 Ling, et al. 2015, "Finding Function
in Form: Compositional Character
Models for Open Vocabulary Word
Representation"

vocabulary word representation.
For each word w with m characters, instead of storing a word em-

bedding, this model iterates over all characters c1, c2 . . . cm to look up
the character embeddings e1, e2 . . . em. These character embeddings
are then fed into a biLSTM to get the final hidden states h f , hb for
forward and backward directions respectively. The final word embed-
ding is computed by an affine transformation of two hidden states:

ew = W f H f + Wb Hb + b

There are also a family of CNN character-based models which will
be covered in lecture 13.

7.3 Hybrid NMT

Luong et al. 16 proposed a Hybrid Word-Character model to deal 16 Luong et al. 2016, Achieving Open
Vocabulary Neural Machine Translation
with Hybrid Word-Character Models

with unknown words and achieve open-vocabulary NMT. The system
translates mostly at word-level and consults the character compo-
nents for rare words. On a high level, the character-level recurrent
neural networks compute source word representations and recover
unknown target words when needed. The twofold advantage of such
a hybrid approach is that it is much faster and easier to train than
character-based ones; at the same time, it never produces unknown
words as in the case of word-based models.

Word-based Translation as a Backbone The core of the hybrid
NMT is a deep LSTM encoder-decoder that translates at the word
level. We maintain a vocabulary of size |V| per language and use
<unk> to represent out of vocabulary words.

Figure 11: Hybrid NMT

Source Character-based Representation In regular word-based
NMT, a universal embedding for <unk> is used to represent all out-
of-vocabulary words. This is problematic because it discards valuable
information about the source words. Instead, we learn a deep LSTM
model over characters of rare words, and use the final hidden state of
the LSTM as the representation for the rare word (Figure 11).

Target Character-level Generation General word-based NMT
allows generation of <unk> in the target output. Instead, the goal
here is to create a coherent framework that handles an unlimited
output vocabulary. The solution is to have a separate deep LSTM that

cs224n: natural language processing with deep learning 17

"translates" at the character level given the current word-level state.
Note that the current word context is used to initialize the character-
level encoder. The system is trained such that whenever the word-
level NMT produces an <unk>, the character-level decoder is asked to
recover the correct surface form of the unknown target word.

	Neural Machine Translation with Seq2Seq
	Attention Mechanism
	Other Models
	Sequence model decoders
	Evaluation of Machine Translation Systems
	Dealing with the large output vocabulary
	Word and character-based models

