
CS224n: Natural Language Processing with Deep
Learning1

1 Course Instructors: Christopher
Manning, Richard Socher

Lecture Notes: TensorFlow2
2 Authors: Zhedi Liu, Jon Gauthier,
Bharath Ramsundar, Chip Huyen

Winter 2017

Keyphrases: TensorFlow
Code Demo: https://github.com/nishithbsk/tensorflow_tutorials

1 Introduction

TensorFlow is an open source software library for numerical com-
putation using data flow graphs. It was originally developed by
researchers and engineers working on the Google Brain Team within
Google’s Machine Intelligence research organization for the purposes
of conducting machine learning and deep neural networks research. Check the official tutorial

https://www.tensorflow.org/get_

started/
Nodes in TensorFlow’s data flow graph represent mathematical

operations, while the edges represent the multidimensional data
arrays (tensors) communicated between them. The advantage of the
flexible architecture is that it allows users to build complex models
step by step and makes gradient calculations simple. TensorFlow
programs use a tensor data structure to represent all data – only
tensors are passed between operations in the computation graph. You
can think of a TensorFlow tensor as an n-dimensional array or list. A
tensor has a static type, a rank, and a shape.

2 Concepts

2.1 Variables, Placeholders, Mathematical Operations

Let’s use
h = ReLU(Wx + b)

where ReLU (Rectified Linear Unit) is defined as f (x) = max(0, x)
as an example to take a closer look at TensorFlow’s data flow graph,
shown in Figure 1. There are three types of nodes in a flow graph:
variables, placeholders and mathematical operations.

Figure 1: An Illustration of a Tensor-
Flow Flow Graph

Variables are stateful nodes that maintain state across executions
of the graph. By stateful, we mean that variables retain their current
values over multiple executions, and it’s easy to restore those saved
values. Variables can be saved to disk during and after training. Typ-
ically, variables are parameters in a neural network. In our example,
weights W and bias b are variables.

Placeholders are nodes whose values are fed in at execution time.
The rationale behind having placeholders is that we want to be able

https://github.com/nishithbsk/tensorflow_tutorials
https://www.tensorflow.org/get_started/
https://www.tensorflow.org/get_started/

cs224n: natural language processing with deep learning 2

to build flow graphs without having to load external data, as we
only want to pass in them at run time. Placeholders, unlike vari-
ables, require initialization. In order to initialize a placeholder, type
and shape of data have to be passed in as arguments. Input data
and labels are some examples that need to be initialized as place-
holders. In our example, placeholder is x. See the code snippet be-
low for initializing an input placeholder that has type tf.float32 and
shape (batch_size, n_features), and a labels placeholder that has type
tf.int32 and shape (batch_size, n_classes).

Example code snippet

input_placeholder = tf.placeholder(tf.float32,

shape=(batch_size, n_features))

labels_placeholder = tf.placeholder(tf.int32, s

hape=(batch_size, n_classes))

Mathematical operations, as the name suggests, represent mathe-
matical operations in a flow graph. In our example, MatMul (multiply
two matrix values), Add (add element-wise with broadcasting) and
ReLU (activate with element-wise rectified linear function) are mathe-
matical operations.

Now we are ready to see our flow graph in code. Let’s assume our
input x has shape (N, Dx), W has shape (Dx, N) and type tf.float32,
b has shape (N, 1) and we will initialize W ∼ Uniform(−1, 1) and
b = 0. Then the code snippet below shows us how to build our flow
graph for h = ReLU(Wx + b).

Example code snippet

import tensorflow as tf

b = tf.Variable(tf.zeros((N,)))

W = tf.Variable(tf.random_uniform((Dx, N), -1, 1))

x = tf.placeholder(tf.float32, (N, Dx))

h = tf.nn.relu(tf.matmul(x, W) + b)

The key thing to remember about symbolic programming lan-
guage is that, up to what what we have written here, no data is ac-
tually being computed. x is just a placeholder for our input data. A
flow graph merely defines a function. We cannot do print(h) and
gets its value as it only represents a node in the graph.

2.2 Fetch, Fetch

Now that we’ve defined a graph, the next steps are to deploy this
graph with a session and run the session to get our outputs. A ses-
sion is an environment that supports the execution of all operations
to a particular execution context (e.g. CPU, GPU). A session can be
easily built by doing sess = tf.Session(). In order for a session to

cs224n: natural language processing with deep learning 3

run, two arguments have to be fed: fetches and feeds. We use feeds
and fetches to get data into and out of arbitrary operations.

Fetches represent a list of graph nodes and return the outputs of
these nodes. We could fetch a single node or multiple tensors. See
the code snippet below for an example of fetching two tensors: mul
and intermed.

Example code snippet

import tensorflow as tf

input1 = tf.constant([3.0])

input2 = tf.constant([2.0])

input3 = tf.constant([5.0])

intermed = tf.add(input2, input3)

mul = tf.mul(input1, intermed)

with tf.Session() as sess:

result = sess.run([mul, intermed])

print(result)

output:

[array([21.], dtype=float32), array([7.], dtype=float32)]

A feed, supplied as an argument to a run() call, temporarily re-
places the output of an operation with a tensor value. The feed is
only used for the run call to which it is passed. Essentially, feeds are
dictionaries mapping placeholders to their values. Nodes that de-
pend on placeholders cannot run unless their values are fed. See the
code snippet below for an example of feeding a feed_dict.

Example code snippet

import tensorflow as tf

input1 = tf.placeholder(tf.float32)

input2 = tf.placeholder(tf.float32)

output = tf.mul(input1, input2)

with tf.Session() as sess:

print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

output:

[array([14.], dtype=float32)]

Before moving on to how to train a model, let’s see a slightly
more complicated example combining fetch and feed. In this ex-
ample, we have a placeholder x that requires initialization. We have
two variables W and b. It should be noted that when we launch a
graph, all variables have to be explicitly initialized before one can
run Ops that use their value. A variable can be initialized by run-
ning its initializer op, restoring the variable from a save file, or sim-
ply running an assign Op that assigns a value to the variable. In
fact, the variable initializer op is just an assign Op that assigns the

cs224n: natural language processing with deep learning 4

variable’s initial value to the variable itself. An example usage is
sess.run(w.initializer) where w is a variable in the graph. The
more common initialization pattern is to use the convenience func-
tion tf.initialize_all_variables() to add an Op to the graph that
initializes all the variables, as illustrated in the code snippet below.

Example code snippet

import numpy as np

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100),

-1, 1))

x = tf.placeholder(tf.float32, (100, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

sess = tf.Session()

sess.run(tf.initialize_all_variables())

{x: np.random.random(100, 784)} is a feed

that assigns np.random.random(100, 784) to placeholder x

sess.run(h, {x: np.random.random(100, 784)})

2.3 How to Train a Model in TensorFlow

1. Define a Loss
The first thing to do in order to train a model is to build a loss

node. See the code snippet below for an example of defining a cross-
entropy loss. We build the loss node using labels and prediction.
Note that we use tf.reduce_sum to compute the sum of elements
across dimensions of a tensor. For our example, axis=1 is used to
perform a row-wise sum.

Example code snippet

import tensorflow as tf

prediction = tf.nn.softmax(...) #Output of neural network

label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

More examples of using tf.reduce_sum

'x' is [[1, 1, 1]

[1, 1, 1]]

tf.reduce_sum(x) ==> 6

tf.reduce_sum(x, 0) ==> [2, 2, 2]

tf.reduce_sum(x, 1) ==> [3, 3]

tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]

tf.reduce_sum(x, [0, 1]) ==> 6

2. Compute Gradients
The next thing we have to do is to compute gradients. TensorFlow

nodes have attached operations; therefore gradients with respect

cs224n: natural language processing with deep learning 5

to parameters are automatically computed with backpropagation.
All we need to do is creating an optimizer object and calling the
minimize function on previously defined loss. See code snippet be-
low for an example of using a GradientDescentOptimizer optimizer
where cross_entropy is the same as we introduced in the previous
code snippet. Evaluating the minimization operation, train_step
at runtime will automatically compute and apply gradients to all
variables in the graph.

Example code snippet

import tensorflow as tf

lr = 0.5 # learning rate

optimizer = tf.train.GradientDescentOptimizer(lr)

train_step = optimizer.minimize(cross_entropy)

3. Train Model
Now we are ready to train a model. This can simply be done by

creating an iterating training schedule that feeds in data, labels and
applies gradients to the variables, as shown in the code snippet be-
low.

Example code snippet

import tensorflow as tf

sess = tf.Session()

sess.run(tf.initialize_all_variables())

for i in range(1000):
batch_x, batch_label = data.next_batch()

sess.run(train_step, feed_dict={x: batch_x, label: batch_label}

2.4 Variable Sharing

One last important concept is variable sharing. When building com-
plex models, we often need to share large sets of variables and might
want to initialize all of them in one place. This can be done by using
tf.variable_scope() and tf.get_variable().

Imagine we are building a neural nets with two layers, if we use
tf.Variable, we would have two sets of weights and two sets of bi-
ases. Let’s assume that these variables are initialized in define_variables().
The problem arises when we want to use this model for two tasks
that share the same parameters. We would have to call define_variables(inputs)
twice, resulting in two sets of variables, 4 variables in each one, for
a total of 8 variables. A common try to share variables is to create
them in a separate piece of code and pass them to functions that use
them, say by using a dictionary. I.e. the define_variables now takes
two arguments, inputs and variables_dict. While convenient, cre-

cs224n: natural language processing with deep learning 6

ating a variables_dict, outside of the code, breaks encapsulation:
1) the code that builds the graph must document the names, types,
and shapes of variables to create, and 2) When the code changes,
the callers may have to create more, or less, or different variables.
One way to address the problem is to use classes to create a model,
where the classes take care of managing the variables they need. For
a lighter solution, not involving classes, TensorFlow provides a Vari-
able Scope mechanism that allows to easily share named variables
while constructing a graph.

Variable Scope mechanism in TensorFlow consists of two main
functions: tf.get_variable(<name>, <shape>, <initializer>) cre-
ates or returns a variable with a given name instead of a direct call
to tf.Variable; tf.variable_scope(<scope_name>) manages names-
paces for names passed to tf.get_variable(). tf.get_variable
does one of two things depending on the scope it is called in. Let’s
set v = tf.get_variable(name, shape, dtype, initializer).

Case 1: the scope is set for creating new variables, i.e. tf.get_variable_scope(name,
reuse=False).In this case, v will be a newly created tf.Variable

with the provided shape and data type. The full name of the created
variable will be set to the current variable scope name + the provided
name and a check will be performed to ensure that no variable with
this full name exists yet. If a variable with this full name already ex-
ists, the function will raise a ValueError. If a new variable is created,
it will be initialized to the value initializer(shape). For example,

Example code snippet

import tensorflow as tf

with tf.variable_scope("foo"):

v = tf.get_variable("v", [1])

assert v.name == "foo/v:0"

Case 2: the scope is set for reusing variables, i.e. tf.get_variable_scope(name,
reuse=True). In this case, the call will search for an already exist-
ing variable with name equal to the current variable scope name
+ the provided name. If no such variable exists, a ValueError will
be raised. If the variable is found, it will be returned. If a variable
already exists but reuse=False, program will crash. For example:

Example code snippet

import tensorflow as tf

with tf.variable_scope("foo"):

v = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=True):

v1 = tf.get_variable("v", [1])

with tf.variable_scope("foo", reuse=False):

v1 = tf.get_variable("v") # CRASH foo/v:0 already exists!

	Introduction
	Concepts

