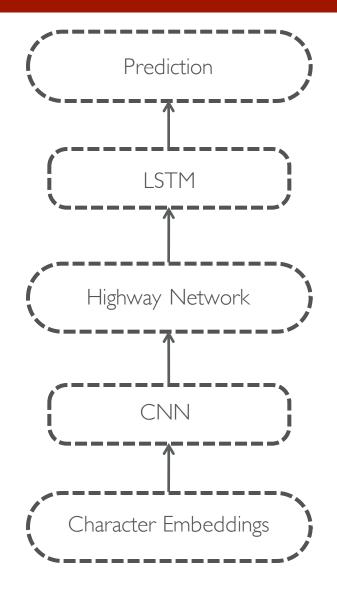
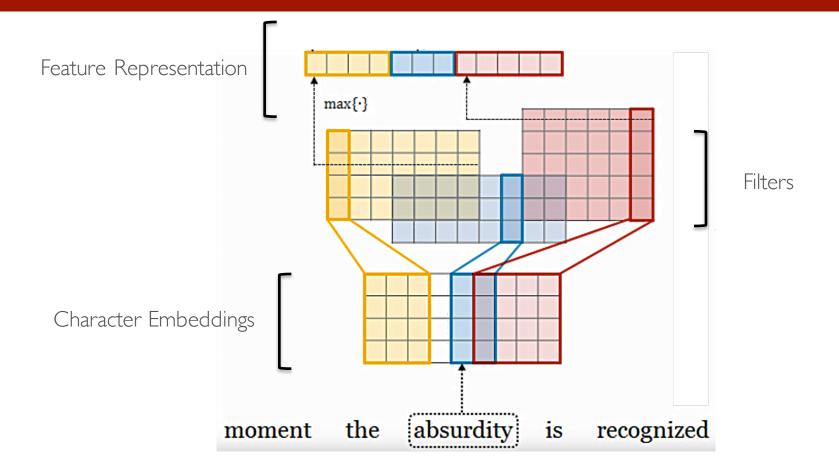
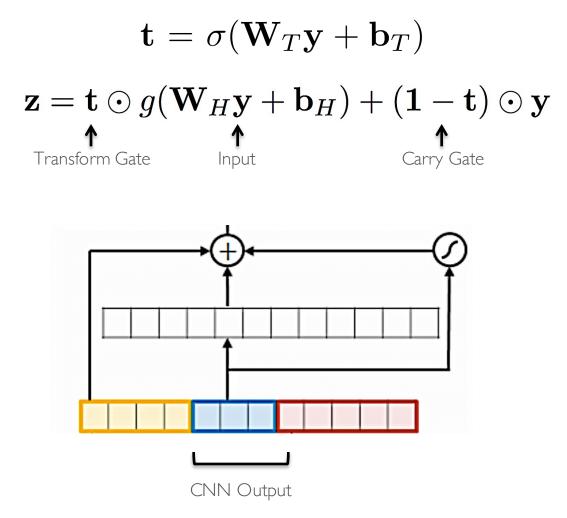

Character-Aware Neural Language Models Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush

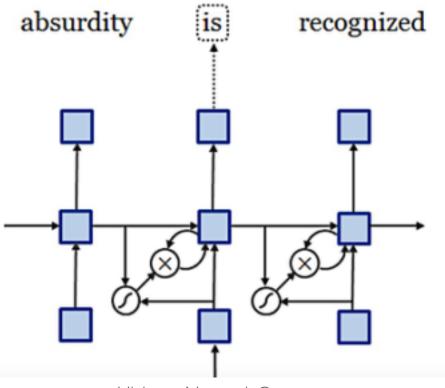

Amani V. Peddada amanivp@cs.stanford.edu

Motivation


- Derive a powerful, robust language model effective across a variety of languages.
- Encode subword relatedness: eventful, eventfully, uneventful...
- Address rare-word problem of prior models.
- Obtain comparable expressivity with fewer parameters.

Technical Approach


Convolutional Layer


- Convolutions over character-level inputs.
- Max-over-time pooling (effectively n-gram selection).

Highway Network (Srivastava et al. 2015)

- Model *n*-gram interactions.
- Apply transformation while carrying over original information.
- Functions akin to an LSTM memory cell.

Long Short-Term Memory Network

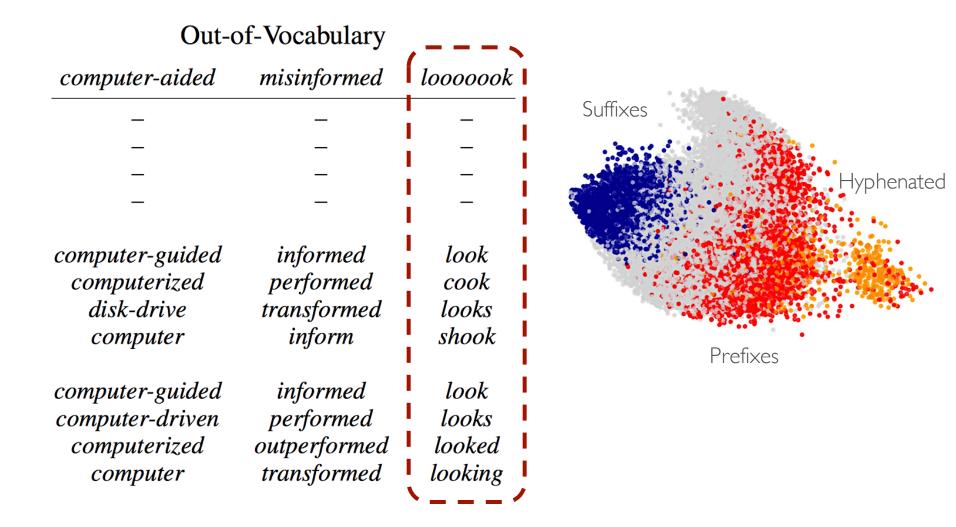
Highway Network Output

- Hierarchical Softmax to handle large output vocabulary.
- Trained with truncated backprop through time.

Quantitative Results

		DATA-S					
		Cs	DE	Es	Fr	RU	Ar
Botha	KN-4 MLBL	$\begin{array}{c} 545 \\ 465 \end{array}$	$\frac{366}{296}$	$\begin{array}{c} 241 \\ 200 \end{array}$	$\begin{array}{c} 274 \\ 225 \end{array}$	$\begin{array}{c} 396\\ 304 \end{array}$	323
Small	Word Morph Char	$503 \\ 414 \\ 401$	$305 \\ 278 \\ 260$	$212 \\ 197 \\ 182$	$229 \\ 216 \\ 189$	$352 \\ 290 \\ 278$	$216 \\ 230 \\ 196$
Large	Word Morph Char	493 398 371	286 263 239	200 177 165	222 196 184	357 271 261	172 148 148

		DATA-L					
		Cs	DE	Es	Fr	RU	En
Botha	KN-4 MLBL	$\begin{array}{c} 862 \\ 643 \end{array}$	$\begin{array}{c} 463 \\ 404 \end{array}$	$\begin{array}{c} 219\\ 203 \end{array}$	$\begin{array}{c} 243 \\ 227 \end{array}$	390 300	$\begin{array}{c} 291 \\ 273 \end{array}$
Small	Word Morph Char	701 615 578	347 331 305	186 189 169	202 209 190	$353 \\ 331 \\ 313$	236 233 216


Comparable performance with fewer parameters!

_			
-		PPL	Size
-	LSTM-Word-Small	97.6	5 m
	LSTM-Char-Small	92.3	$5 \mathrm{m}$
	LSTM-Word-Large	85.4	20 m
\rightarrow	LSTM-Char-Large	78.9	19 m
_	KN-5 (Mikolov et al. 2012)	141.2	2 m
	RNN [†] (Mikolov et al. 2012)	124.7	6 m
	RNN-LDA [†] (Mikolov et al. 2012)	113.7	7 m
	genCNN [†] (Wang et al. 2015)	116.4	8 m
	FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
	Deep RNN (Pascanu et al. 2013)	107.5	6 m
	Sum-Prod Net [†] (Cheng et al. 2014)	100.0	$5 \mathrm{m}$
	LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
\rightarrow	LSTM- 2^{\dagger} (Zaremba et al. 2014)	78.4	$52 \mathrm{m}$

Qualitative Insights

	In Vocabulary				
	while	his	уои	richard	trading
LSTM-Word	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

Qualitative Insights

Conclusion

- Questions the necessity of using word embeddings as inputs for neural language modeling.
- CNNs + Highway Network over characters can extract rich semantic and structural information.
- Key takeaway: can compose "building blocks" to obtain more nuanced or powerful models!