Improving Distributional Similarity with Lessons Learned from Word Embeddings

Omer Levy, Yoav Goldberg, Ido Dagan

Presented by: Ajay Sohmshetty

Count-based distributional models

Neural network-based models

Count-based distributional models

- SVD (Singular Value Decomposition)
- PPMI (Positive Pointwise Mutual Information)

Neural network-based models

- SGNS (Skip-Gram Negative Sampling) / CBOW
- GloVe

Count-based distributional models

- SVD (Singular Value Decomposition)
- PPMI (Positive Pointwise Mutual Information)

Neural network-based models

- SGNS (Skip-Gram Negative Sampling) / CBOW
- GloVe

Conventional wisdom:

Neural-network based models > Count-based models

Count-based distributional models

- SVD (Singular Value Decomposition)
- PPMI (Positive Pointwise Mutual Information)

Neural network-based models

- SGNS (Skip-Gram Negative Sampling) / CBOW
- GloVe

Levy et. al.:

Hyperparameters and system design choices more important, not the embedding algorithms themselves.

Hyperparameters in Skip-Gram

$$J_t(\theta) = \log \sigma \left(u_o^T v_c\right) + \sum_{i=1}^k \mathbb{E}_{j \sim P(w)} \left[\log \sigma \left(-u_j^T v_c\right)\right]$$

$$P(w) = U(w)^{3/4}/Z$$

Unigram distribution smoothing exponent

→ These can be transferred over to the count-based variants.

Context Distribution Smoothing

$$PMI_{\alpha}(w,c) = \log \frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}_{\alpha}(c)}$$
$$\hat{P}_{\alpha}(c) = \frac{\#(c)^{\alpha}}{\sum_{c} \#(c)^{\alpha}}$$

Shifted PMI

$$SPPMI(w,c) = \max(PMI(w,c) - \log k, 0)$$

All Transferable Hyperparameters

	Hyperparameter	Explored Values	Applicable Methods	
	Window	2, 5, 10	All	
	Dynamic Context Window	None, with	All	
Preprocessing <	Subsampling	None, dirty, clean	All	
	Deleting Rare Words	None, with	All	
Association	Shifted PMI	1, 5, 15	PPMI, SVD, SGNS	
Metric	Context Distribution Smoothing	1, 0.75	PPMI, SVD, SGNS	
	Adding Context Vectors	Only w, w+c	SVD, SGNS, GloVe	
Postprocessing —	Eigenvalue Weighting	0, 0.5, 1	SVD	
	Vector Normalization	None, row, col, both	All	

Results

		Word Similarity Tasks						Analogy Tasks	
								1	
win	Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.	Google	MSR
		Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex	Add / Mul	Add / Mul
2	PPMI	.732	.699	.744	.654	.457	.382	.552 / .677	.306 / .535
	SVD	.772	.671	.777	.647	.508	.425	.554 / .591	.408 / .468
	SGNS	.789	.675	.773	.661	.449	.433	.676 / .689	.617 / .644
	GloVe	.720	.605	.728	.606	.389	.388	.649 / .666	.540 / .591
5	PPMI	.732	.706	.738	.668	.442	.360	.518 / .649	.277 / .467
	SVD	.764	.679	.776	.639	.499	.416	.532 / .569	.369 / .424
	SGNS	.772	.690	.772	.663	.454	.403	.692 / .714	.605 / .645
	GloVe	.745	.617	.746	.631	.416	.389	.700 / .712	.541 / .599
10	PPMI	.735	.701	.741	.663	.235	.336	.532 / .605	.249 / .353
	SVD	.766	.681	.770	.628	.312	.419	.526 / .562	.356 / .406
	SGNS	.794	.700	.775	.678	.281	.422	.694 / .710	.520 / .557
	GloVe	.746	.643	.754	.616	.266	.375	.702 / .712	.463 / .519

Key Takeaways

- This paper challenges the conventional wisdom that neural network-based models are superior to count-based models.
- While model design is important, hyperparameters are also KEY for achieving reasonable results. Don't discount their importance!
- Challenge the status quo!