
CS 224N, Winter 2017

Practice Midterm #1
Note: This practice midterm contains a subset of questions from the CS224D midterm given
in 2015, since some topics were not covered in CS224N.

1 Siamese Nets

Siamese neural nets have an interesting architecture– the same parameters and functions are
used to evaluate 2 inputs. As one might expect, Siamese nets are useful to train similarity
metrics, evaluations of how “close” inputs are. These nets have been applied to facial recog-
nition tasks with a good deal of success, but in this example, we’ll see how to train Siamese
nets to learn a distance metric for word vectors. One might imagine training a net to map
word vectors across languages, discover synonyms or antonyms, etc.

Here is one such model to evaluate how similar two input words are using Euclidean distance.
There are two input word vectors x1, x2 ∈ Rn, shared parameters W ∈ Rm×n and b ∈ Rm,
and a single hidden layer associated with each input:

h1 = σ(Wx1 + b)

h2 = σ(Wx2 + b)

We evaluate the distance between the two activations h1, h2 using Euclidean distance as our
similarity metric. The model objective J is

J =
1

2
‖h1 − h2‖2F +

λ

2
‖W‖2F

where λ is a given regularization parameter. (The Frobenius norm ‖.‖F is a matrix norm

defined by ‖A‖F =
√∑

i,j |Aij|2)

CS 224N Practice Midterm #1 - Page 2 of 8 02/06/2017

1) (7 points) Calculate ∇WJ and ∇bJ .

Model:
h1 = σ(Wx1 + b)

h2 = σ(Wx2 + b)

J =
1

2
‖h1 − h2‖2F +

λ

2
‖W‖2F

2) (3 points) Write out the (vanilla) gradient descent update rules for the model parameters
for a single training example (with arbitrary step size α).

3) (3 points) If W ∈ R5×10 and b ∈ R10×1, how many parameters does the model have?

4) (2 points) How does this model compare to the skip-gram model you implemented in
Assignment 1? Give one qualitative similarity or one difference.

Page 2

CS 224N Practice Midterm #1 - Page 3 of 8 02/06/2017

In class, we’ve discussed models for learning word vector representations. Now imagine you
wanted to see how ReLU/sigmoid nonlinearities might affect training on single word inputs.
But instead of training two separate nets, you want to train a psuedo-Siamese net like the
one below.

Our model is:
h1 = σ(W1x+ b1)

h2 = relu(W2x+ b2)

ŷ = softmax(W3(h1 + h2) + b3)

where x ∈ Rn, W1, W2 ∈ Rm×n, W3 ∈ Rk×m, b1,b2 ∈ Rm, and b3 ∈ Rk. We evaluate this
model for N examples and k classes with cross entropy loss

J = − 1

N

N∑
j=1

k∑
i=1

yijlog(ŷij)

where yj is the one-hot vector for example j with all probability mass on the correct class
and ŷj are the softmax scores for example j.

5) (7 points) Find ∇h1J , ∇h2J , and ∇xJ .

6) (3 points) Which is likely to train faster, W1 or W2? Explain.

Page 3

CS 224N Practice Midterm #1 - Page 4 of 8 02/06/2017

2 Adaptive regularization

Dropout. Dropout is a stochastic regularization technique where with probability p a
neuron in a neural network is kept alive. Neurons are dropped during training (during both
forward and back propagation). To be more thorough, if you have a hidden layer h

h = f(Wx+ b)

then dropout is an element-wise multiplication of a binary mask matrix m where mj ∼
Bernoulli(p)

ĥ = m ◦ f(Wx+ b)

1) (3 points) For the tanh (f(x) = exp(x)−exp(−x)
exp(x)+exp(−x)) and ReLU (f(x) = max{0, x}) functions,

we can rewrite the equation above as

h̃ = f(m ◦ (Wx+ b))

Why is this true? (Hint: This is not true if f is the sigmoid function f(x) = 1
1+exp(−x) .)

2) (4 points) Suppose you were given ∂L
∂h̃

, the gradient of the loss L with respect to the

hidden layer h̃. How would you use this to calculate ∂L
∂W

if f(x) = tanh(x)? Remember,
tanh′(x) = 1− (tanh(x)2).

Page 4

CS 224N Practice Midterm #1 - Page 5 of 8 02/06/2017

Relationship between L2-penalty and SGD. In class, we learned how to update pa-
rameter values w with respect to a loss function J via SGD with step size αt.

SGD update: wt+1 = wt − αt∇wtJ(wt)

Linear, L2-penalized update: wt+1 = argmin
w
{J(wt) +∇wtJ(wt)

T (w −wt) +
1

2αt

‖w −wt‖22}

The L2-penalized update involves finding w to minimize the linear approximation of the loss
function at wt (first two terms) with a L2-regularizer term (last term) which mandates that
the distance between the current weights and update weights be small. Interestingly, both
dropout and Adagrad can be framed as adaptive methods with different regularizer terms.
For more detail, see Wager et al.1

3) (5 points) Show that the L2-penalized update is equivalent to the SGD update.

1Wager, Stefan, Sida Wang, and Percy S. Liang. “Dropout training as adaptive regularization.” Advances
in Neural Information Processing Systems. 2013.

Page 5

CS 224N Practice Midterm #1 - Page 6 of 8 02/06/2017

3 Recurrent nets

GRUs. In class, we learned about RNNs and an extension— Gated Recurrent Units. GRUs
can adaptively reset or update its “memory” of previous states. The feedforward computa-
tion for a GRU is given by

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

h̃t = tanh(Wxt + rt ◦ Uht−1)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t

1) (3 points) Show that for the sigmoid function σ(x) = 1
1+exp(−x) , σ(−x) = 1− σ(x)

2) (1 point) True/False. If the update gate zt is close to 0, the net does not update its state
significantly.

3) (1 point) True/False. If the update gate zt is close to 1 and the reset gate rt is close to 0,
the net remembers the past state very well.

Page 6

CS 224N Practice Midterm #1 - Page 7 of 8 02/06/2017

Gated Feedback RNNs (GF-RNNs). GF-RNNs are a new model of stacked RNNs which
allow the network to learn long-and short-term dependencies. Unlike in a typical stacked
RNN, where information flows from inputs up to higher layers but not back to lower layers,
GF-RNNs allow for the back-flow of information from higher to lower layers. Typically,
information flows to lower levels at a finer timescale than to higher levels; GF-RNNs allow
information in higher layers to be updated at a finer timescale.

Unlike GRUs which have a reset gate for each unit, GF-RNNs have a global reset gate which
controls signal propagation from all layers at some time step t − 1 to the next time step
t. The figure below (lifted directly from Chung et. al2) illustrates the difference between
conventional stacked RNNs and GF-RNNs.

The global reset gate between layers i and j is given by

gi→j = σ(W i→j
g ht

j−1 + U i→j
g ht−1)

where W i→j
g are the weights for the input states (with hj−1t = xt for j = 1) and U i→j

g are the
weights for the hidden states for all layers at time t− 1.

Imagine we have each hidden layer neuron compute the tanh function. We have

hjt = tanh(W j−1→jhj−1t +
L∑
i=1

gi→jU i→jhit−1)

where we have L layers. (The only difference between this and a typical stacked RNN is
that the previous hidden states in all layers are controlled by the global reset gates for the
layer.)

2Chung, Junyoung, et al. “Gated Feedback Recurrent Neural Networks.” arXiv preprint
arXiv:1502.02367 (2015).

Page 7

CS 224N Practice Midterm #1 - Page 8 of 8 02/06/2017

Model:
gi→j = σ(W i→j

g ht
j−1 + U i→j

g ht−1)

hjt = tanh(W j−1→jhj−1t +
L∑
i=1

gi→jU i→jhit−1)

4) (10 points) Given loss at time t Jt and ∇hj
t
Jt the gradient of the loss with respect to

the jth hidden unit hjt in “layer” t, calculate ∇gi→jJt and ∇W i→j
g

Jt. Remember, tanh′(x) =

1− (tanh(x)2).

Page 8

